Brunner Air Compressor Manuals

Leave a comment

Or more importantly a source for parts and seals? , 05:57 AM: Message edited by: johnnydmetal. Brunner compressor. View online Owner's manual for Titan TAC-2T Air Compressor or simply click Download button to examine the Titan TAC-2T guidelines offline on your desktop or laptop computer.

David:Okay, let's get started. My name is David and I'm marketing manager for Industrial Controls and today we are going to have a webinar about pneumatic control systems. The presentation is going to take about forty-five minutes. We're going to hear from two experts. At the end of the presentation, we are going to take some time and we are going to answer your questions. There are two ways that you can ask questions. One way is if you look in your screen there is a chat box where you can actually a question and I can read the questions for you and our panelists will answer them.

Also, if you're on the phone line and are not using a microphone, you can raise your hand using the interface and we can call on you and you can ask your question. So we are going to wait until we are done with the presentation before we do those though.I'd like to introduce John. He is a senior engineer at Industrial Controls and has close to 30 years experience in the industry. In that time, he has worked with mechanical contractors and industrial and commercial customers selecting discrete components and designing HVAC and industrial solutions. He has pneumatic and combustion experience in many areas of expertise in those. He did his undergraduate work at the Milwaukee School of Engineering.I'd also like to introduce Carl from Honeywell. He is a Commercial Distributor Rep and has been with them for 37 years.

He was previously a New Construction Technician, Service & Installation Manager, and a National Accounts Manager. Carl graduated from the University of Illinois with a BS degree in Industrial Education. Carl has his FAA - Airframe & Power Plant Mechanic License, FCC - 1st Class License with Ship Radar Endorsement, and is a Certified Energy Manager. So at this time I'd like to pass it to John.John:On behalf on your friends at Industrial Controls, we'd like to welcome you to the first in the series of pneumatics seminars aimed at demystifying pneumatic controls. Today's seminar will be close to an hour and Carl and I are going to kind of trade-off as we go to keep it conversational.

Today's focus is going to be somewhat introductory really. We are going to begin with the air supply which is the motive force for pretty much any pneumatic system. We have dates for the next three sessions and they are April 21st and we are going to be talking about thermostats and controllers. Devices, relays, actuators and such and last of all June 16, the applications so if you forget the dates just keep in mind it's going to be the third Wednesday of the next three months.

That's probably the easiest way to remember that. Although the first pneumatic control system was patented by Warren 115 years ago they are still quite viable. When the benefits of pneumatics are combined with today's DDC systems, you can leverage quite a bit. So at that, we are going to dig in and I'm going to pass it along to Carl.Carl:John thanks for the introduction and I'm going to try to move forward here so bare with us. We are going to be advancing the next slide so hopefully people can see that. We do have a student computer over on the other side.

Pneumatic control fundamentals part one- hopefully somebody can touch base with Mark on that as far as listening to him on the telephone. For our objectives for this morning we are going to be talking about major components of pneumatic controls and we are going to be looking at an understanding pneumatic terminology. I think with any new type of thing that you are trying to learn just getting the basic terminology down and once you understand the terminology and then you can move forward with that. So that is what our focus is for today. Also, from a service standpoint and we will start with people in the field with existing installations and not really as a new or going at it from an application engineering standpoint. We can answer some questions in regards to that but the focus is our service repair and troubleshooting.

So today we are going to be looking at the main air compressor and the mechanical rooms. We are going to be talking about the dryers that are going to be drying in the air and looking at the pressure reducing valves that take that air pressure from the compressor and send it out to the rest of the building. And as they are wrapping it up, were going to talk about pneumatics in the marketplace and look at where pneumatics has come from and where pneumatics are going in the future.So were going to advance the next slide and hopefully that's coming up on everybody's computer. Everybody should see the overview as far as seeing the compressor, refrigerated air dryers, a picture of that, and also a picture of filter stations and PRVs and also going out to the pneumatic thermostats. So I think a lot of times we look at pneumatic air supply sources and kind of skipped over it. Everybody wants to start learning about what the thermostats do and what the controllers do and we really want to focus today on the mechanical rooms and what goes on in that mechanical room because it's a really, really important part of any of the pneumatic control systems in any building.

So we want to look at these individual items. Make sure they are fully understood and also look at the risk if we don't maintain them or if they are not look at and repaired quickly. We will be going through those topics as well. So we want to be able to supply a clean air. We want to make sure that it's dry and oil free and make sure that it has an adequate volume.

And also, we'll talk about the reliability and also we put on ads and look at different things as far as going through and walking through and doing job surveys which John and I both do on a pretty regular basis. So were going to be able to hopefully impart some of what we do and maybe you can also share during your question session what questions you might have and what you do.John:Sure, so what were going to do is start off with the compressor and that's obviously our motive source for the system and when we think of compressor we think about it as a large module, a unit if you will, but it's really broken down or can be into another couple of components. The one depicted on this slide is called a simplex meaning it's only got one pump, one motor.

Some compressors for redundancy will have multiple motors and pumps on one receiver. The receiver itself being just the tank, hopefully you can see the mouse there.

Lynda android tutorials free download. Learn Android programming for apps with tutorials from lynda.com. Develop Android apps from scratch or incorporate Java applications into your Android development process. Lynda.com is now LinkedIn Learning! To access Lynda.com courses again, please join LinkedIn Learning. Android Training and Tutorials.

Air

The air comes in as you would guess through the filters at the top of the compressor. Goes through a set of reed valves and on every downward stroke of the piston we draw air in. As the crank continues to turn, we push the piston up, another set of reed valves open and allow air to pass into the receiver. The cycle continues until the pressure switch is satisfied and that's typically done at 80 to 100 psi. The reason we do that is to store air at high pressure so that the receiver size isn't physically so large. The problem points quite often are limited to obviously a problem with the motor, the belt, the compressor.

It can be a number of things really but we take air at high pressure, we pass it through the refrigerated air dryer, which we will talk about in a moment, through the regulator and out to the system.The compressor typically will run when properly size at about a third of the time meaning the duty cycle of runtime if it's on for five minutes it should be off for ten and that's done so that we extend compressor life. The types of compressors typically like depicted here would be the reciprocating type where you can actually see a piston moving if you were to take the head off of course. Or a rotary type or a turbine type and another important thing to consider with compressors that are designed for comfort applications as opposed to pneumatic power tools and the type of stuff that you see at most Home Depot stores and such is that these compressors are designed to turn very slowly so that we don't take a lot of oil out of the crank case and vaporize it past the rings of the compressor and push it down into the receiver. So the lower the crank speed the longer the life and the less aerosols as they're called pass through the compressor and into the system to be later extracted.There is a tank range shown on the tank because obviously a natural byproduct of compressing the air is adding heat. That heated high pressure air comes into the cool receiver and you'll get a lot of condensate that needs to be removed there.

So the automatic train is there to do that. It can be float operated meaning that you'll see a float chamber with a valve and a needle and as the float becomes buoyant because of the water elevating in that chamber it will discharge to a floor drain nearby. Some actually use solenoid valve and a timer. The timer is set for a certain on and off duration and based on just an imperial setting of those on and off times we arrive at some suitable amount of training.

Again, that discharge to the floor drain. It's a pretty simple device really but it can be a neglected only because it's mechanical and it's running 24/7 and it does require maintenance.Carl:John, as far as the tank itself as far as you and I have been talking about what are the results what happens when it auto drain is not working properly?John:Well, you'll find first of all that the cycle time will change because some of the internal volume of the tank is consumed by water. Ultimately, at some point where that water becomes so high that it starts to come into the downstream components. We'll have a serious issue. So the auto drain itself should be looked at as sequencer should be really on a daily basis. We'd be looking for the drain line going to the floor drain or local drain to be wet of course because it's going to be operating all the time and just looking for compressed air pressures on the receiver, listening for sounds, smelling.

If you've got belts that are burning or slipping, the motor might hesitate to start the pump so those kinds of individual checks are really prudent on a daily basis.Carl:Yeah, I think the compressor itself like we talked about earlier on it’s so important to make sure that you have this clean, dry oil free air. Don't take it for granted. The air that is coming out of this compressor is heating a lot of very expensive pieces of equipment throughout the whole building. John Graham is a senior engineer at Industrial Controls and has close to 30 years experience in the industry.

In that time, he has worked with mechanical contractors and industrial and commercial customers selecting discrete components and designing HVAC and industrial solutions. Pneumatics and combustion are two of his many areas of expertise. John did his undergraduate work at the Milwaukee School of Engineering.Carl Johnsen is a Commercial Distributor Rep for Honeywell and has been with them for 37 years. Carl was previously a New Construction Technician, Service & Installation Manager, and a National Accounts Manager. Carl graduated from the University of Illinois with a BS degree in Industrial Education.

Carl has his FAA - Airframe & PowerPlant Mechanic License, FCC - 1st Class License with Ship Radar Endorsement, and is a Certified Energy Manager.